Intravenous magnetic nanoparticle cancer hyperthermia
نویسندگان
چکیده
Magnetic nanoparticles heated by an alternating magnetic field could be used to treat cancers, either alone or in combination with radiotherapy or chemotherapy. However, direct intratumoral injections suffer from tumor incongruence and invasiveness, typically leaving undertreated regions, which lead to cancer regrowth. Intravenous injection more faithfully loads tumors, but, so far, it has been difficult achieving the necessary concentration in tumors before systemic toxicity occurs. Here, we describe use of a magnetic nanoparticle that, with a well-tolerated intravenous dose, achieved a tumor concentration of 1.9 mg Fe/g tumor in a subcutaneous squamous cell carcinoma mouse model, with a tumor to non-tumor ratio > 16. With an applied field of 38 kA/m at 980 kHz, tumors could be heated to 60°C in 2 minutes, durably ablating them with millimeter (mm) precision, leaving surrounding tissue intact.
منابع مشابه
Induced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملAn investigation of the effect of hyperthermia using iron and magnetic nanoparticles in cancer treatment
Introduction: hyperthermia using different methods such as microwave and magnetic waves is one of the methods to treat cancer. In this method, iron and magnetic nanoparticles are used to increase the temperature and increase the effect of hyperthermia as auxiliary treatment with chemotherapy and radiotherapy. In this study, the role of iron and magnetic nanoparticles have been ...
متن کاملStudy on Fe3O4 Magnetic Nanoparticles Size Effect on Temperature Distribution of Tumor in Hyperthermia: A Finite Element Method
In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...
متن کاملCancer hyperthermia using magnetic nanoparticles.
Magnetic-nanoparticle-mediated intracellular hyperthermia has the potential to achieve localized tumor heating without any side effects. The technique consists of targeting magnetic nanoparticles to tumor tissue followed by application of an external alternating magnetic field that induces heat through Néel relaxation loss of the magnetic nanoparticles. The temperature in tumor tissue is increa...
متن کاملCombined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells.
A novel therapy is demonstrated utilizing magnetic nanoparticles for the dual purpose of delivering microRNA and inducing magnetic hyperthermia. In particular, the combination of lethal-7a microRNA (let-7a), which targets a number of the survival pathways that typically limit the effectiveness of hyperthermia, with magnetic hyperthermia greatly enhances apoptosis in brain cancer cells.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013